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A relation between the radiation and scattering of 
surface waves by axisymmetric bodies 
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Results corresponding to those of Newman (1975) for wholly or partially im- 
mersed cylinders are obtained, namely relations between the phase angles of the 
cylindrical outgoing surface waves generated either by the forced oscillations of 
an immersed axisymmetric body or by the scattering effect of the body on a 
plane wave. 

1. Introduction 
A smooth finite body of arbitrary shape is wholly or partially immersed in 

incompressible inviscid fluid under gravity. The fluid is unbounded horizontally 
and may be infinitely deep or have finite, constant depth. Cylindical polar co- 
ordinates (R, 8, z )  are chosen with z measured vertically downwards and origin 
in the mean free surface such that a portion of the z axis is interior to the body. 
Surface tension is neglected and the fluid motion, which is periodic with period 
2m/a, is assumed small enough for the equations to be linearized. Then the velo- 
city potential, which is of the form Re [#(R, 8, z )  e-id], satisfies 

throughout the fluid region and the boundary conditions 

K #  +a#/az = o at z = 0, (1.2) 
where R = a2/g and g is the gravitational acceleration, and 

or # - + O  as 2 3 0 0  (infinitedepth). 

Conditions on # on the body and as R -+ 03 are necessary to determine the motion 
and will involve either the scattering of a plane wave or the radiation of waves by 
the body. 

Recently, Newman (1975) has shown how in the corresponding two-dimen- 
aional problem there is a relation between the reflexion and transmission co- 
efficients R and T and the amplitudes of the waves generated in either direction 
by forced oscillations of the body. It is obtained by strategic use of Green’s 
theorem and when the cylinder is symmetric about a vertical plane, reduces to 
simple expressions for R and T in terms of the phases of waves generated by 

(1.3) I a#/az = 0 at z = H (finitedepthH) 
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symmetric and antisymmetric oscillations of the body. Then follows the deduc- 
tion that the latter are independent of the type of oscillation. 

Since the solution for high frequency plane surface waves incident on a sphere 
submerged in infinitely deep water (Davis 1974a) showed features similar to those 
of the corresponding solution for a circular cylinder (Davis 1974b), it  seems 
reasonable to apply Newman's ideas to the three-dimensional case. A plane wave 
travelling from the 8 = 7r direction has potential ofthe form, with K = k tanh kH, 

(Abramovitz & Stegun 1964, 3 9.1.21), where E ,  is Neumann's symbol (co = 1, 
E ,  = 2 when m 1). When H + co, the ratio outside the summation reduces to 
e-&. Each Bessel function can be expressed as an average of Hankel functions 
and then it is seen that the plane wave is a superposition of incoming and outgoing 
cylindrical waves of equal amplitude. The scattering effect of the body on a 
plane wave and the radiative effect of the body when oscillating both produce 
outgoing cylindrical waves a t  infinity. It is of considerable advantage in this three- 
dimensional situation that the plane wave can be allowed to approach the bocly 
from any direction. I n  the axisymmetric case, results of the same type as 
Newman's are obtained and illustrated by the example of a sphere. I n  the general 
case, corresponding results are not obtained because there is interchange of 
energy between Fourier modes. 

2. The axisymmetric body 
Here the z axis is an axis of symmetry in the immersed body. When the plane 

wave is incident from the direction 8 = $ +n, the total scattered-wave potential 
q&(R, 8, x ;  $) is such that 

a$,lan = 0 onthebody, (2.1) 
cash k ( H - z )  * c 6, i m  [(I +am)Hg (kR) +H$:(kR)] cos m(8- $) 

"(') 2coshkH m = O  
as R+m. (2.2) 

The symmetry demands that, like the plane wave, only even functions of 8 - $ 
enter and with coefficients independent of $. 

The radiation potential $,(R, 8, z )  satisfies 

ac$,lan = f onthebody, (2.3) 
where f is a prescribed real-valued function of position on the body, and is such 
that 

cash k(H-2) c em(A, cos me +B, sin me) H$(kR) as R + CO. (2.4) " 2 cosh kH m=O 

When Green's theorem is applied to $s($'l) and $8($z) throughout the fluid 
region, (1.1)-(1.3) and (2.1) ensure that the only non-zero contribution arises 
from i n h i t y  and (2.2) then yields 

m 
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Since this is valid for all and $2, it follows that 

11 +a,l = 1 (m >, 0). 

When Green's theorem is applied to $,.-Tr and $s($) throughout the fluid 
region, then, again, since $,.-x satisfies (2.1) because f i n  (2.3) is real, the only 
non-zero contribution arises from infinity and (2.2) and (2.4) imply that 

m 

m=O 
Z em i" [A,  cos m$ +B, sin m$ +( 1 +a,) (A, cos m$ +% sin m$)] = 0. 

Since this is true for all $, it follows that 

(2.6) 
A ,  +(1 + a , ) Z  = 0 (m 2 O ) ,  
B, +(1 +a,) B,= 0 (m >, 1). 

Instead of receiving the plane wave from all possible directions, (2.6) could have 
been obtained by observing that, owing to the symmetry, each A,,, and B, is 
determined only by the corresponding Fourier component in f, each of which is 
a function of position on the cross-section of the boundary of the body. Also, 
(2.5) can be deduced from (2.6) by writing 

(2.7) 

1 +a, = - exp(2iISm), 8, = + i n + i a r g ( l  +a,), (2.8) 

A ,  = lAml exp (G,), B, = IB,I exp (iv,). 
Of interest now is that (2.6) implies that 

and similarly for v,. Alternatively 

a, = - 2 exp (id,) cos I S ,  = - 2 exp (iv,) cos v,, 

i.e. I cos8,l = I cosv,I = ilarn1, (2.9) 

8,,v, = arga, or arga,+.i.r. 

Thus, subject to a possible shift of 180°, the cylindrical reflected wave in each 
mode arising from the incidence of the plane wave is, by comparison of (2.2) and 
(2.4), either in phase (with m even) or a quarter of a period behind (m odd) the 
radiated wave of the same mode. The latter therefore have phases independent 
off in (2.3) and are determined solely by the shape and position of the body. 

In the particular case discussed by Davis (1974a), the body is a sphere of 
radius a and mean depth h ( >  a )  and Ka is large. Then, asymptotically it is 
found that 

Hence it can now be deduced from (2.8) that 
am 2i e-2IUh-a) [(nKa)+ + O (I)]. 

ISm,vm N + p + e - 2 K ( h - a )  [( n R a ) ' t+O(l ) l  

for any given real-valued normal derivative on the sphere. 
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3. The arbitrary body 

scattered-wave potential $& 8, z, $) satisfies (2.1) and is such that 
When the plane wave again travels towards the direction 8 = $, the total 

Gosh L(H - Z) e,ii"{[H$(kB) +HE(kR)]cosm(8-$) "($) rv 2 cosh k H  m=O 

+HE(kR) [u,($)cosm8 +b,($)sinm8]} as R+m. (3.1) 

Each coefficient urn($) or b,($) is periodic in $ with period 277 and has a Fourier 
series which in general involves both sines and cosines. There is now, unlike the 
axisymmetric case, interchange of energy between modes characterized by m in 
the above summation. Instead of (2.6) an infinite set of homogeneous simul- 
taneous equations is obtained with coefficients depending on {urn($), b,(+)}, i.e. 
on the shape and position of the body. 

When the body is a weak scatterer, the functions a,($) and b,($) are small 
and it then follows that A ,  and B, are almost pure imaginary. An obvious 
example of this situation, based on the submerged-sphere case mentioned 
previously, is when the wavelength is small compared with the depth of the 
highost point of a submerged body. 

Equivalent results, in terms of Kochin functions, have been derived by 
Newman (1976). 
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